Sunday, May 23, 2010

Last hours of CLEO/QELS

Before I finalize this post, it is very important to write something about the post-deadline session. Especially that it was outstandingly good! The quality of the talks and the work presented was amazing.

The talk on Coherent Perfect Absorbers, given by Prof. Douglas Stone from Yale University (QPDA5), was very clear and interesting. The authors propose a new idea of a perfect absorber, or a time-reversed laser, based on adding the right amount of dissipation under certain conditions and a certain illumination.

I would also like to mention a very artistic performance of Prof. Evgenii Narimanov from Purdue University (QPDA6), giving a talk on radiation-absorbing metamaterials. The authors developed a new approach to radiation-absorbing systems, based on the broadband super-singularity in the density of states of hyperbolic metamaterials. The broadband singularity leads to a dramatic enhancement of the light scattering from the defects and surface corrugations at the interface of the hyperbolic metamaterials, with nearly all the incident light scattered into the guided modes of the metamaterials. Hyperbolic metamaterials are materials that have one of the components of the dielectric tensor negative, so that in the k-space they are described by two hyperboloids, so that the phase volume and, hence, the density of states limited between them is infinite. The authors have experimentally demonstrated the reduced reflectance from the surface of hyperbolic metamaterials made of silver nanowires upon corrugation.

Another impressive talk was given by Ming Liu who presented A nano-scale light-driven plasmonic motor. The authors experimentally demonstrated that a nonoscale-size motor, based on a gammadion, can generate a sufficiently large rotation force being illuminated by linearly-polarized or non-polarized light. The authors embedded the gammadion in a micron-size silica disc, 4000 times larger than the motor, and demonstrated that the motor can rotate the disc in water. By changing the wavelength of light the authors were able to demonstrate the change in speed and direction of the rotation. A very impressive movie demonstrating the experimental realization of the motor has been shown. It was absolutely spectacular!

I also enjoyed the talk given by Dr. Marco Peccianti on Subpicosecond 200-GHz soliton laser based on CMMOS-compatible integrated microring resonatior (CPDA9). The authors approach involves a novel configuration that embeds the ring resonator inside a fiber-optic ring laser cavity. The nonlinearity and dispersion in the fiber-optic ring cavity induce the formation of the broadband soliton pulses. The material used in the microring device is the high-index doped silica. The authors experimentally demonstrated the performance of their device.

As the CLEO/QELS has ended, I am finishing this blog. It was a great conference and went very well for me, even though I am exhausted and need some time to process all the things I've learned. I hope you enjoyed reading this blog, and hope to see you all next year in Baltomore!

No comments:

Post a Comment